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Example – RL Env

OpenAI – Gym – CartPole Env

State: Pole angle,
dist. from center

Action: +1 (left),
-1 (right)

Reward: +1, if pole is
upright

Termination: Pole angle > 15
from vertical 

Source: gym.openai.com/envs/CartPole-v1/
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C-51

Distributional RL algorithm

PDDM

Model-Based RL algorithm

PDDM + C-51

Model-Based Distributional RL algorithm

Outline
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C-51: Distributional RL algorithm

Bellemare, Marc G., Will Dabney, and Rémi Munos. "A distributional perspective on reinforcement learning." International Conference on Machine Learning. PMLR, 2017.
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Understanding Distributional RL

Image Source: deepmind.com/blog/article/going-beyond-average-reinforcement-learning

Avg commute time: 3*5 + 15/5 = 18 mins

Actual commute times: 15 mins to 30 mins
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Bellman Equation

Distributed bellman equation

Classic bellman equation

Reward for reaching state s Discounted reward from state s` to goal

Discounted reward distribution from state s` to goal
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Learning Distributional Reward 
Representation

reward distribution

51 nodes



9

Parametric Distribution

Projected Bellman Update

w.p.
V

MIN
V

MAX

Histogram bucket sizes

Reward distribution
for each node

Bellman Equation Limits of our distribution



10

C-51 Algorithm

● For discrete action-spaces only

Bellemare, Marc G., Will Dabney, and Rémi Munos. "A distributional perspective on reinforcement learning." International Conference on Machine Learning. PMLR, 2017.



11

Example – Distributional RL

Image Source: deepmind.com/blog/article/going-beyond-average-reinforcement-learning
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Example – Distributional RL
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● More stable learning agent

● Richer set of predictions

Benefits of distributional reward 
formulation

● Reduces Chattering
Chattering: When a policy converge to a region where it oscillates indefinitely
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PDDM: Planning with Deep Dynamics Models

Nagabandi, Anusha, et al. "Deep dynamics models for learning dexterous manipulation." Conference on Robot Learning. 2020.

Model–Based Reinforcement Learning
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Types of Learned Models

● A transition/dynamics model:

● A model of rewards:

● An inverse transition/dynamics model:

● A model of distance:

● A model of future returns:



16

What does PDDM learn ?

● A transition/dynamics model:

● A model of rewards:

● An inverse transition/dynamics model:

● A model of distance:

● A model of future returns:

( learns )

( assumes knowledge )
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PDDM: Model Overview
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Learning State-Transition Model

● Ensemble of 3 NN 
models
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PDDM: Model Overview
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Policy Learning (Controller)

Gradient Free Optimization

H = Number of horizons per trajectory

N = Number of trajectories

R = Reward for that trajectory
Mean Action Update

● Tries to learn mean of the action distribution
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Policy Learning (Controller)

Action Sampling and Smoothing

Sampling Gaussian Noise

Applies smoothing and filtering

Action Sampling
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Policy Learning (Controller)

Gradient Free Closed-Loop Planning

● Performs short-horizon rollouts (H=10) using 
learned model

● Employs gradient-free optimization to 
select best action at each step

● Chooses the trajectory with highest 
cumulative reward
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PDDM Algorithm
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Combining PDDM with C-51



25

PDDM: Model Overview
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PDDM + C-51: Model Overview
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Updated Controller

V
MIN

V
MAX

Mean Action Update



28

Benefits

Distributions with same estimates
no longer similar

Learner gets access to both - future
states and reward distributions
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Expectations

● Enables learning in stochastic environments

● Chosen actions are more risk-averse

● Execute episodes with longer rollouts
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Experiments
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Simulator 

Baoding Balls Manipulation

● State Size: 

● Action Size: 

● Reward Formulation: rotating both balls 
in robot’s palm (without any ball falling 
and robotic wrist < 25 degrees) 

● Deterministic environment
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Experiment 1

Baoding Balls - PDDM Baoding Balls - PDDM + C51
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Experiment 1 (contd.)

Comparing distributional reward with actual reward function
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Experiment 1 (contd.)

Pearson Co-relation score b/w env and dist rewards
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Experiment 2
● Adding Gaussian Noise to baoding balls env 
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Analysis

Pddm (using env reward function) Pddm (using distributed reward function)

Baoding balls simulation after 5M steps

``
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Analysis

Optimal policy

Error due to state-transition model

Compounded error due to state-
transition model + distributional 

reward model
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Further Work

Further analysis on small state-space envs 

● Gym – minigrid env
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Thank You

Questi
ons  ?
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